Refine Your Search

Topic

Author

Search Results

Technical Paper

The Large Shear Strain Dynamic Behavior of In-Vitro Porcine Brain Tissue and a Silicone Gel Model Material

2000-11-01
2000-01-SC17
The large strain dynamic behavior of brain tissue and silicone gel, a brain substitute material used in mechanical head models, was compared. The non-linear shear strain behavior was characterized using stress relaxation experiments. Brain tissue showed significant shear softening for strains above 1% (approximately 30% softening for shear strains up to 20%) while the time relaxation behavior was nearly strain independent. Silicone gel behaved as a linear viscoelastic solid for all strains tested (up to 50%) and frequencies up to 461 Hz. As a result, the large strain time dependent behavior of both materials could be derived for frequencies up to 1000 Hz from small strain oscillatory experiments and application of Time Temperature Superpositioning. It was concluded that silicone gel material parameters are in the same range as those of brain tissue.
Technical Paper

Modeling of an Automotive Exhaust Gas Converter at Low Temperatures Aiming at Control Application

1999-10-25
1999-01-3623
The LEV/ULEV emission standards pose challenging problems on automotive exhaust gas treatment. This increases the need for good catalytic converter models, which can be applied for control. A dynamic converter model was made on the basis of first principles, accounting for the accumulation of mass in the bulk gas phase, in pores of the washcoat and on the catalytic surface, as well as for the energy accumulation in the gas and solid phase. The basis for the model is the elementary step kinetics of the individual global reactions. The main purpose of the model is to describe the low temperature behavior of the converter, when the majority of the emissions occur. The light-off process is analyzed in detail with different inputs. The biggest improvement occurs when secondary air is injected in front of the converter. The converter model is also coupled with a simple SI engine model to investigate the dynamic behavior of the whole system.
Technical Paper

Comparison of the Dynamic Behavior of Brain Tissue and Two Model Materials

1999-10-10
99SC21
Linear viscoelastic material parameters of porcine brain tissue and two brain substitute materials for use in mechanical head models (edible bone gelatin and dielectric silicone gel) were determined in small deformation, oscillatory shear experiments. Frequencies to 1000 Hertz could be obtained using the Time/Temperature Superposition principle. Brain tissue material parameters (i.e., dynamic modulus (phase angle) of 500 (10°) and 1250 Pa (27°) at 0.1 and 260 Hz, respectively) are within the range of data reported in literature. The gelatin behaves much stiffer (modulus on the order of 100 kPa) and does not show viscous behavior. Silicone gel resembles brain tissue at low frequencies but becomes more stiffer and more viscous at higher frequencies (dynamic modulus (phase angle) 245 Pa (7°) and 5100 Pa (56°) at 0.1 and 260 Hz, respectively).
Technical Paper

A Three-Dimensional Head-Neck Model: Validation for Frontal and Lateral Impacts

1994-11-01
942211
The three-dimensional head-neck model of Deng and Goldsmith (J. Biomech., 1987) was adapted and implemented in the integrated multibody/finite element code MADYMO. The model comprises rigid head and vertebrae, connected by linear viscoelastic intervertebral joints and nonlinear elastic muscle elements. It was elaborately validated by comparing model responses with the responses of human volunteers subjected to frontal and lateral sled acceleration impacts. Fair agreement was found for both impacts. Further, a sensitivity analysis was performed to assess the effect of parameter variations on model response. The model proved satisfactory and may be used as a tool to improve restraint systems or dummy necks.
X